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Real-Time Frequency and 2-D Angle Estimation
with Sub-Nyquist Spatio-Temporal Sampling

Michael D. Zoltowski, Member, IEEE, and Cherian P. Mathews, Member, IEEE

Abstract— An algorithm is presented for real-time estimation
of the frequency and azimuth and elevation angles of each
signal incident on an airborne antenna array system over a very
wide frequency band (2-18 GHz) commensurate with electronic
signal warfare. The algorithm provides unambiguous frequency
estimation despite severe temporal undersampling necessitated
by cost/complexity of hardware considerations. The 2-18 GHz
spectrum is decomposed into 1-GHz bands. The baseband output
of each antenna is sent through two 250-MHz sampled channels
where one is delayed relative to the other (prior to sampling)
by 0.5 ns, which is the Nyquist interval for a 1-GHz bandwidth.
Due to the high variance of the Direct ESPRIT frequency es-
timator, aliased frequencies are estimated via a simple formula
and translated to the proper aliasing zone, utilizing eigenvector
information generated by PRO-ESPRIT. The algorithm also
provides unambigous 2-D angle estimate over the entire 2-18 GHz
bandwidth, despite severe spatial undersampling at the higher
end of this band necessitated by mutual coupling considerations
and resolving power requirements at the lower end of the band.
Eigenvector information generated by PRO-ESPRIT is used to
facilitate computationally simple estimation of azimuth and ele-
vation angles that are automatically paired with corresponding
frequency estimates despite aliasing. Simulations are presented
demonstrating the capabilities of the algorithm.

1. INTRODUCTION

HE problem under investigation is that of real-time

estimation of the frequency and azimuth and elevation
angles of each signal incident on an airborne antenna array
system over a very wide frequency band (2-18 GHz) com-
mensurate with electronic warfare. The problem is complicated
by severe undersampling in both the temporal and spatial
domains necessitated by cost and complexity of hardware
considerations [1].

To reduce the complexity of the overall receiver hardware,
the bandwidth at the intermediate frequency is chosen to be
quite large equal to 1 GHz. Correspondingly, the entire 2-18
GHz spectrum is decomposed into overlapping 1 GHz bands;
each band is examined in succession or in parallel. The Nyquist
temporal sampling rate for digitization of a 1-GHz band is
2 GHz. Although A/D converters operating at 2-GHz rate
are available, they are very expensive, and processing speed
following the converter may limit the overall operation of the
receiver. In the prototype system pictured in Fig. 1 [1], the
receiver output, after conversion to baseband, is sampled at a
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Fig. 1. Receiver module and front-end signal processing for ith antenna in
the prototype system.

rate of 250 MHz, which is one eighth of the Nyquist rate. This
severe undersampling leads to aliasing and attendant problems
of ambiguity. The aliased frequency as a function of baseband
frequency with a sampling rate of 250 MHz is plotted in Fig. 3.

Note that the aliasing function plotted in Fig. 3 is for the
case where only the in-phase channel is sampled. Sampling
of the quadrature channel represents additional hardware costs
and, overall, doubles the number of samples to be processed.
Thus, in keeping with the overall goal of reduced complexity
of hardware and computation, it is assumed that only the in-
phase component, which is a real-valued signal, is sampled
and input to the system. Note that it is typically necessary
to generate the complex analytic signal in a direction find-
ing application to resolve a 180° ambiguity in the azimuth
angle estimates. Again, motivated by the desire to keep the
computational complexity low, the complex analytic signal is
roughly approximated by computing the DFT of the output
of each antenna and throwing away the negative frequency
portion of the spectrum. This approach averts the need to pass
the sampled signal through an FIR digital Hilbert transformer,
which could possibly lead to edge effects or a reduced number
of effective time samples (depending on whether one includes
all output points of the FIR digital Hilbert transformer or just
those output points for which there were no zero entries in
the FIR filter window.) The spatio-temporal signal model is
developed in Section IL!

In order to estimate the base-band frequency of each signal
despite aliasing, the base-band output of each antenna is sent
through two 250-MHz sampled channels, where one is delayed
by T relative to the other (prior to sampling) as indicated
in Fig. 1. The time-delay 7 is chosen less than or equal to
the Nyquist sampling interval for the baseband bandwidth W,

IThe procedure for frequency estimation with subNyquist temporal sam-
pling developed within may be easily adopted for narrow-band direction-of-
arrival estimation with two identical, collinear uniform linear arrays (ULA’s).
In this application, the displacement between the two arrays should be less
than a half wavelength, but the interelement spacing for either array may be
much greater than a half wavelength to achieve a large aperture and, hence,
increased resolution capability relative to a ULA of the same total number of
elements but with half-wavelength spacing.
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ie., 7 < 1/(2W). In the prototype system depicted in Fig. 1,
W =1GHz, and 7 = .5ns = .5 x 10~° 5. ESPRIT [2],
[3] may then be applied to estimate the baseband frequencies
in any 1-GHz base-band bandwidth. To facilitate real-time
implementation, ESPRIT is applied in DFT space. In this mode
of processing the steps are

i) Compute an FFT of a block of samples.

ii) Locate peaks via a simple peak-picking algorithm.

iii) Apply ESPRIT to a small set of DFT values around

each peak.

In Section III, we show that the Direct ESPRIT frequency
estimator has a variance several orders of magnitude greater
than the Cramer-Rao lower bound (CRB). An alternative
approach referred to as Indirect ESPRIT is presented that is
computational simple and achieves performance very close to
the CRB. Indirect ESPRIT makes novel use of eigenvector
information generated by the PRO-ESPRIT algorithm [3] to
estimate the aliased frequency of each source via a simple
formula and correctly translate it to the proper aliasing zone,
where it is added to or subtracted from the appropriate integer
of the sampling rate in accordance with Fig. 3.

Once the frequency of each signal is estimated, the next
goal is to estimate the corresponding azimuth and elevation
angles. There are two problems here. First, each angle estimate
must be correctly paired with the proper frequency estimate.
Second, in general, 2-D angle estimation is significantly more
computationally complex than 1-D angle estimation. Again,
real-time implementation is an overriding factor. Now, since
the sources are at different frequencies, the filtering inherent in
selecting only those DFT values around a spectral peak should
ideally be sufficient to isolate single source contributions
and avoid the frequency-angle pairing problem. However,
aside from sidelobe leakage effects, this is not the case as
sources well separated in analog frequency may be aliased
to very nearly the same digital frequency. In Section IV,
eigenvector information generated by PRO-ESPRIT is used
to facilitate computationally simple estimation of azimuth
and elevation angles automatically paired with corresponding
frequency estimates despite aliasing.

In the case of a uniformly spaced linear array, half-
wavelength spacing between antennas is required to avoid
ambiguities in estimating the arrival angle of a signal.
With half-wavelength spacing at the upper end of the 2-18
GHz spectrum, the elements are too closely spaced at the
lower end of the spectrum, leading to problems of mutal
coupling and poor resolution. The resolution capability and
estimator accuracy of any arrival angle estimation algorithm
is proportional to the aperture length measured in units of
wavelengths. To achieve a high degree of resolution power
and estimator accuracy and yet avoid mutual coupling, the
elements must be spaced nonuniformly over a large aperture.

The prototype system employs an L-shaped antenna ar-
ray having nonuniformly spaced elements along each leg as
pictured in Fig. 2. The interelement spacings along either
axis is much greater than a half wavelength, particularly at
18 GHz. In Section IV, we develop i) a prescription for
interelement spacings for nonambiguous angle estimation and
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Fig. 3. Aliasing function: Aliased frequency as a function of baseband
frequency after sampling at 250 MHz with real processing (no I and Q).

i) an attendant algorithm for angle estimation that is compu-
tationally simple for real-time implementation. Although there
is a plethora of previous work on the design of nonuniform
linear arrays [6]-[8], the development in Section IV assumes
a small number of antenna elements due to cost and space
limitations on the antenna platform attached to the aircraft.
In addition, high sidelobes is not as much a problem since
we are able to isolate the individual contribution of each
source. In contrast to previous work [6]-[8], the prescription
for interelement spacings is developed synergistically with a
simple integer-based search algorithm for angle estimation.
Secton V presents simulations that demonstrate the power
of the overall frequency and 2-D angle estimation algorithm
summarized in the flowchart presented in Fig. 5.

1. SPATIO-TEMPORAL SAMPLING AND DATA MODEL

The parameters for the prototype subNyquist spatio-
temporal sampling system are indicated in Fig. . We
concentrate on signal parameter estimation for a particular
1-GHz base-band bandwidth. For the sake of simplicity,
the signals are modeled as RF pulsed waveforms. The
development to follow, though, holds as long as each signal
satisfies the standard narrowband assumption %% cosf < 1.
For a given signal

B bandwidth

fo  carrier frequency

L length of the array

A wavelength

cos@ direction cosine relative to the array axis.

Since the carrier frequencies here lie somewhere between 2
and 18 GHz, the narrowband assumption is satisfied almost
always except for some extremely wide-band signals. We
also assume that no two signals are at exactly the same RF
frequency. Even if there is multipath propagation between a
given source and the airborne antenna array, the Doppler shift
each multipath signal undergoes is distinct as long as each
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multipath signal has its own distinct azimuth and elevation
coordinates [9].

Let the sampling rate be denoted F. We are here assuming
that F, is well below the Nyquist rate leading to aliasing.
For our prototype system, F, = 250 MHz is equal to one
eighth of the Nyquist rate (2 GHz for a 1-GHz baseband
bandwidth). Consider sampling a single sinusoid of the form
cos(2m Fjt + ¢), where F; is the baseband frequency (0 <
F; < 1 GHz).

cos(2n Fjt + ¢)|i=n/F,

= cos <2w%n + q'))

= cos27 fjn + ¢ for 0 < Fj < %
) ) (1)
= cos L27r(%: — >n+¢-
= cos —27r<1 - ﬂ)n - qﬁT
= cos[2n fin — ¢] for 75 < F; < F,
= cos 27r(1—i n—i—dj

)
cos[2x fn + ¢
s o (B -2)v ]
— cos |2n(2- 12

(- 7)

= cos[2n fin — ¢)

2

|

F, ,
for 3? < Fj < 2F,

For each range of the analog baseband frequency, the corre-
sponding digital frequency f; is between 0 and 0.5, i.e., 0 <
fi < .5. Continuing this development, we obtain the aliasing
function g(F') plotied in Fig. 3 for the case of F, = 250
MHz corresponding to our prototype system. With the aliasing
function thus defined, the digital frequency f; is related to
analog baseband frequency F; as f; = g(F};)/Fs. The analog
aliased frequency is defined as F} = f;Fs = g(F); F} i

the frequency one would obtain if the analog sinusoidal s1gnal
was reconstructed from its samples. An important observation
in (1) is that when Fj is in a range where the slope of the
aliasing function g(F') is negative, the constant phase offset
of the sampled sinusoid is the negative of that associated with
the continuous-time sinusoid.

In order to estimate the base-band frequency of each signal
despite aliasing, the base-band output of each antenna is
sent through two 250-MHz sampled channels where one is
delayed by 7 relative to the other (prior to sampling). We
here assume that the time delay 7 is less than or equal to the
Nyquist sampling interval for the baseband bandwidth, W,
ie., 7 < 1/(2W). In the prototype system depicted in Fig. 1,
W =1GHzand 7 = 0.5 ns = 0.5 x 107°
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The sampled versions of the reference and time-delayed
data sets, which are referred to as the X and Y data sets,
respectively (one pair of data sets for each antenna), may be
described as

zi(n) = Z{ I piR5Vs0 oIk V5 (1) g2 fim
i=1
AJ —J"JV o ,—Jk;v;(1) p =327 fin
+ e e )
J
yi(n) = Z { €]E7’Y] e]") /J(")B_J"J?‘”Fg‘re.72""f1

i=1

+ %e—jnj'yjo e—jnj'yj(i)ej;cj21erTe—j27rfjn}

where, for the moment, we are neglecting the effects of noise.
The various quantities in (2) are described below. J is the total
number of signals in a particular 1-GHz base-band bandwidth.
A; is the amplitude of the jth signal, whereas ;o is the phase
of jth signal at the origin of the antenna array system. ~;(8) is
the relative phase of the jth signal arrival at the ith antenna.
If the ith antenna is at the z-y coordinate pair (z;,y;) and
the jth source is at an azimuth angle of §; and an elevation
angle of ¢;

2
v;(2) = —/\—W(;c1 cos 6, sin ¢; + y; sin 6 sin ¢;)
)

i=1,...,M 3

where ); is the wavelength of the jth signal arrival, and M
is the total number of antennas comprising the array. «; is
the slope of the aliasing function g(F) at F' = F} equal
to either +1 or —1. In accordance with (1), ; takes into
account the conjugation that occurs when Fj is in an interval
where the aliasing function is downward sloping. Note that
in the prototype system, the observation interval is 0.5 us
= 0.5 x 107%s, yielding roughly N = 128 samples for each
of the M antennas.

As indicated in Fig. 1, the first processing step is to compute
an FFT of both the X and Y data sets at each antenna output.
Ultimately, ESPRIT [2], [3] is applied to a small set of DFT
values around each spectral peak in the positive frequency
portion of each of the 2M spectra. We are effectively using
the DFT as a narrow-band pass-band filter. This is done for two
reasons. First, by isolating only positive frequencies, we are
able to resolve a 180° ambiguity in azimuth angle. Second,
in processing a given peak, the eigenvalue decompositions
(EVD’s) required are done on matrices of dimension equal
to the number of DFT values that are less than the number
of antennas. Separate peaks may be processed in parallel.
Recall that sources well separated in base-band frequency may
be aliased to very nearly the same digital frequency due to
undersampling. Thus, several sources may be contributing to
a given spectral peak. .

The respective N-point DFT’s of the X and Y data sets for
the sth antenna are denoted X;(k) and Y;(k), i = 1,..., M,
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and may be expressed as

Aj
Xl(k) - Z{ 2] eIRiYio ok ;s (E) Sch (f] k)

i=1

A ) .
Z{ eJKJ'YJOEJ"J'YJ('L) ~JjK;2nF; TSlI’lCN (f]__].c_)
= N

A] - - ) Gk 2nFT . k
eI e D T siney, (ffW)}
)

where N; is the number of samples for which the jth signal
is “turned on,” and the periodic sinc function is defined

as sinen(f) = e I™(V- Uf% Note, in contrast to

convention, that we include the phase term e~7*(V=1)f in the
definition of sincy (f) for the sake of notational simplicity.
The next processing step is to locate spectral peaks. We
here assume that a simple peak-picking algorithm is employed.
Note that only coarse estimates of the peak locations are
required for the algorithm to perform well. The respective DFT
spectra for the X and Y data set for each antenna, 2M DFT
spectra all together, should exhibit peaks at the same locations.
At this point, we concentrate on a single peak in each DFT
spectrum at the same location located at or near the DFT value
k = k, without loss of generality. L = 2L’ + 1 DFT values
around the corresponding peak in each DFT spectrum are
collected to construct the following set of 2M L x 1 vectors:

Xi(ko) = [Xi(ko — L'), ..., Xi(ko), ..., Xilko + LT
Yi(ko) = [Yi(ko — L'), ..., Yi(k,),...,Yi(k, + L')]7.

To give a perspective on the computational complexity, in
the simulations presented in Section VI, we ran cases where
Xi(k,) and Y;(k,) are 4 x 1 and cases where X;(k,) and
Yi(k,) are 5 x 1. The governing factor is that the number
of DFT values selected around a peak should be at least
one greater than the number of sources making significant
contributions to that peak, which is denoted .J'.
Substituting (4) into (5), the L x 1 vector of X DFT

values around %k, may be expressed as

J

Xi(ko) = {%ej””""e””f“’)d(fn
j=1

4

+ 7e—jnnjoe—jnnj(i)d(,fj)} (6)

where d{f;) is the L x 1 vector

d(f;) = [sincNJ [fj — kO&L } sincy, [f]» %],
P
., sincy, [fj—k";L” :

Q)

As long as the window of DFT values is not either near k£ = 0
or near k = N/2, the DFT acts as a narrow-band band-pass
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filter such that d(— f;) is small enough relative to d(f;) to be
negligible. To simplify the development, we will neglect the
contribution of d(—f;). If d(—f;) is not negligible, then the
algorithm to be developed will indicate a source having a neg-
ative aliased frequency that potentially may be screened out.

Neglecting the negative frequency contributions, X;(k,) =
EJJ L Sieirivioeiriti()d(f;), where J' < J is the number
of sources making a significant contribution to the spectral
peak at or near the digital frequency k,/N. This expression
describes the vector of DFT values around a peak in the DFT
spectrum of a single antenna. The DFT vectors from all A
antennas are placed as the columns of an L X M matrix as

X = [Xi(ko) : Xo(ko) : -+
in factored form as

: X ps(ko)]. X may be expressed

J/

X = ZA/e]K]’YJOd( ) T(0]7¢]’n]) (Lx M) (8
i=1

where A’ = Aj/2  and  a(f;,¢;,k;) =

[e7man () 1m0 () eJnm(M)]T with 7;(i) defined by
(3). a(f;,¢;,k;) for k; = 1 is the M x 1 array manifold
vector for a signal incident from the (6;,¢;) direction. The
dependence on «;, which is the slope of the aliasing function
at Fj, is introduced as a simplistic means of denoting a
conjugation; it allows us to avoid breaking the sum in (8)
into terms for which the array manifold is conjugated and
those for which it is not conjugated.

Similarly, the corresponding DFT outputs from all M
antennas for the Y (time-delayed) data is collected as Y =

[Y1(ko) i Ya(ko) i -+ : Yar(k,)). Neglecting negative fre-
quency components, Y may be expressed as

Jf
Y = Z A;-ejn]v)aB_jn]%rF]Td(fj)aT(gja ¢j1 Hj)
=1

(Lx M). 9

Equations (8) and (9) represent the pure signal component of
the spatio-temporal data model assumed throughout. Again, «;
is the slope of the aliasing function g(F') in Fig. 3 at F' = F}
equal to either +1 or —1. ; is a notational tool that takes into
account the conjugation that occurs when Fj; is in an interval
where the aliasing function is downward sloping.

III. ESPRIT-BASED FREQUENCY ESTIMATION
WITH TEMPORAL UNDERSAMPLING

Given the data model described by (8) and (9), the applica-
bility of ESPRIT [2], [3] is evident.

Y =X
J’ ‘ _
_ ZA;_eJnmo{e—Jﬁ?’fFﬂ — p}d(£;)aT (65, ¢, 5;)-
j=1

(10)

The critical observation for estimating F; is that when p =
e~ 27T the rank of Y — uX drops from J’ to J’' — 1 since
the Ith term drops out of the sum. Thus, p; = e‘f"fz"pﬂ,j =
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Fig. 4. Phase of ESPRIT eigenvalue as a function of analog base-band
frequency with 250-MHz sampling rate.

1,...,J" are J’ distinct generalized eigenvalues of the L x M
rectangular matrix pencil {Y,X}.

The argument of the ESPRIT eigenvalue arg{yu;} =
—k; 27 F;T is plotted as a function of the base-band frequency
F; for F; = 250 MHz in Fig. 4. Recall that «; is the slope of
the aliasing function at F' = Fj. Note that certain ranges of
phase within (—7, ) are not permissible as the argument of
;- In fact, only half of the 2x interval (—,7) is permissible.
For example, under ideal noiseless conditions, no value of
phase in the interval (—w/8,—2x/8) is permissible as the
argument of p; = e Im2mEiT,

The PRO-ESPRIT [3] variant of ESPRIT is here employed
as a “fast” implementaton of ESPRIT for estimating the phase
factors —k;27F;7,j = 1,...,J. PRO-ESPRIT operates
on the L x L autocorrelation and cross-correlation matrices
Ree = 4 520 Xi(ko)XH(k,) = £XXH and Ry, =
LM Yi(ko)XH(k,) = &YX Note that the number
of DFT values selected around the peak at k, (L) may be
as small as two if only a single source is contributing to
the peak. The algorithm is first summarized and then briefly
justified.

First, compute an EVD of Rxx:Rxxuw; = \u;,t =
1,...,L, where the eigenvalues are indexed in order of
decreasing magnitude. The number of complex sinusoids with
aliased frequency components in the vicinity of k,,J" < J
may be determined from a number of techniques including
statistical tests that examine the eigenvalues such as AIC
or MDL. With the J’ < L largest (signal) eigenvalues
and corresponding signal eigenvectors, construct the J' x J’
diagonal matrix X5 and the L x J' matrix Usg as

Ts = diag{(A1 = Amin)¥2, (A2 = Amin) /%, ..,
()\J’ - /\min)1/2}

Us=[u15u2

amn

. u.]/}. (12)

The smallest eigenvalue An;, is asymptotically equal to the
noise power that affects the diagonal elements of the auto-
correlation matrix R,,.. Note that for a given antenna output,
even if the noise is not white, i.e., the noise spectral density is
not flat over the entire 1-GHz bandwidth, it can be shown that
the noise contaminating a small set of successive DFT values
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is approximately i.i.d. The final major step is an EVD of

v =3;'U%R,, Ussg! (' xJ). (13)

The eigenvalues of ¥ are estimates of p; = e~J%2757 j =

L

Proof: Let X = UgSg V¥ be the SVD of X, including
only the J’ nonzero values and corresponding left and right
singular vectors; Ug is Lx J', Zg is J'xJ', and Vg is M xJ".
It follows from (8) and (9) that range{Ug} = range{Y} =
span{d(f1),..,d(f;)} and range{Vs} = range{Y"} =
span{a (01,451,/11) a*(fy, ¢y, ky)} such that Y =
USUS YVSVS s where USUS and VsVH are projection
operators. Thus

Y - uX = UgUZY V# - yUsEsVE
= UsSs{S5'U#YVs — ul; }VE
= USs{Z5'UFYVsSsUHUsES! -l }VE
= UsSs{S5 URYXHUsES! — pulp VY (14)

where we have used the fact that LsUHUgSg! = I;. Thus,
the J’ nontrivial generalized eigenvalues of the L x M matrix
pencil {Y,X} may be computed as the eigenvalues of the
J' x J' matrix £5 U YXHUgX;'. The proof is completed
by recognizing that XXH = UsSiUL.

In the prototype system 7 = 0.5 x 107 9 s such that
F; may be estimated from the phase of the jth ESPRIT
elgenvalue according to F; = l|arg{u;}/27|(2 x 10%) Hz,
j = ,J!, where arg{z} is the phase angle of the
complex number z. Any error in arg{p;} due to noise is
grossly magnified due to the multiplication by 109, ie.,
multiplication by 1 GHz. Simulations presented in Section VI
reveal that the variance of the base-band frequency estimates
obtained from ESPRIT in this manner are on the order of
10 MHz, whereas the CRB on the variance of any unbiased
estimator of frequency is on the order of 10 KHz. This extreme
differential motivates us to see if we can obtain a performance
closer to the CRB without incurring too much additional
computation.

The above approach is referred to as the Direct ES-
PRIT approach. An alternative approach is referred to as
Indirect ESPRIT. The steps in Indirect ESPRIT are as
follows:

i) Estimate the digital frequency f;.

ii) Convert f; to the aliased analog frequency via F}! =

fiFs

iii) Translate F} up to the proper aliasing zone using the

phase of the ESPRIT eigenvalue (15, in conjunction with
Fig. 4, where F is either added to or subtracted from
an integer mulnple of the sampling rate to estimate the
actual base-band frequency.
Two computationally efficient, high-resolution algorithms for
estimating the aliased frequencies using DFT values as input
are Beamspace Root-MUSIC [4] and Beamspace ESPRIT
[5]. Recall that high-resolution capability is necessary since
sources well separated in analog frequency may be very
closely spaced in digital frequency due to aliasing. However,
despite their relative computational efficiency, implementing
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either of these two algorithms represents a substantial increase
in computational complexity.

More important, though, is the data association problem
wherein the aliased frequency estimates must be paired with
the correct ESPRIT eigenvalue so that it is translated to the
proper alias zone. If the aliased frequencies are estimated
independently of the ESPRIT eigenvalues, this pairing problem
is very difficult and insurmountable when sources are closely
spaced in frequency after aliasing. Fortuitously, eigenvector
information provided by PRO-ESPRIT facilitates automatic
pairing of the aliased frequency estimates with the corre-
sponding ESPRIT eigenvalues. In addition, the eigenvector
information generated by PRO-ESPRIT provides a means for
isolating the individual contribution of each source despite
aliasing. This facilitates simple estimation of the aliased fre-
quency associated with each source. It may be done on an
individual basis, assuming a single source leading to a simple
closed-form formula as shown shortly.

The jth M x 1 right generalized eigenvector r; of the L x M
rectangular matrix pencil {Y,X} is that vector satisfying
{Y — p;X}r; = 0. Substituting the noiseless (ideal) forms
of the X and Y data matrices:

7
Y Ajelmiie{e TN uhd(f;)a” (6, 85, k5) prs=0.
j=1

(15)

When p = e 7277 the [th term d(f;)a (61, ¢, k1) drops

out of sum such that a” (¢;, ¢y, kyryj =0forl=1,...,J' 1 #

Jj. Hence, r; can be used to extract d(f;) to within a scalar

multiple:

Xrj o d(f;) (Yr; o d(f;)).

A key point is that the estimate of d(f;) obtained in this

manner is automatically paired with the ESPRIT eigenvalue

that is an estimate of p; = e~9%27Fi7 since r; is the right
generalized eigenvector associated with p;. Thus, a frequency
estimation algorithm that assumes a single source may be

applied to d( f;) to estimate f;.

Note that we only desire r; in order to compute Xr; as
our estimate of d{f;) to within a scalar multiple. We can
bypass the computation of r; and construct Xr; directly from
the J’ x 1 right eigenvectors of ¥, which is defined by (13),
satisfying W3, = p;08;, j=1,...,J. From (14) and (15),
it follows that

d(f]) X Xl'j =U525‘6j j = 1,...,J’ (16)
where £g and Ug are constructed from the J’ largest eigen-
values and corresponding eigenvectors of R, according to

(11) and (12), respectively.

Next, we apply Beamspace ESPRIT [5] to &( fj) to es-
timate f;. After much algebraic manipulation, the single
source assumption leads to the following simple formula for
estimating f;:

iy = goag{a®(f)apra(s)) G=1...0 an

o
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where &(fj) is computed as in (16), and P{ and A are each
L x L matrices defined as

1
PL=1, - leT

: ~jomkezL! —jonke
A:dlag{e J o,...,e TN e

_j2,rkg;1,’ }
(18)

where 1 is an L x 1 vector composed of all ones. The
aliased analog frequency is then estimated as I} = Ff;,
where F, = 250 MHz in our prototype system. Rather than
develop the formula in (17) as a simplification of the general
Beamspace ESPRIT algorithm presented in [5], due to space
limitations, we here simply present a proof that it works when
d(f;) = d(/fy).

Proof: First, we need to define some quantities. Let W
denote an L x N matrix whose rows are L successive rows
of the N x N DFT matrix associated with the DFT indices
ko—L' ... ko,...,ko+L'. Let W; and W be composed of
the first and last N — 1 columns of W, respectively. W; and
W, are each Lz(N — 1) and related as Wy = AW, Finally,
let wy denote the last column of W; wy = diag(AN~1),
where diag () converts the L x L diagonal matrix AN~! to
an L x 1 column vector. Note that the first column of W is 1
such that P{W = [0, P{W,y] = [0, P{AW,],
where 0y, is an L x 1 vector composed of all zeroes.

Next, define v(f) as the N x 1 Vandermonde vector v(f) =
[1,e27f eitnf | IWN-127AT Tet vyi(f) and va(f) be
composed of the first and last N — 1 elements of v(f),
respectively. vi(f) and vo(f) are each (N — 1) x 1 and
related as vo(f) = e/2*f v (f). With these definitions and
relationships, it follows that

d*(f)ATPL()
=vH(f;)WHA*PTWv(f;)
= VH(fj)WHA*PiLAWIVI(fj)ej%rfj
= {v{’(fj)w{f +e—j(N—1)27rwag}

X A*Pf-Awlvl(f]_)ej'zwfj
=vI(f))WHA'PL AW v (f;)el*™ s
+1TPL AW, vy (f;)e I 2274,

= (V)W A PL AW (f) }e*s

where we have used the fact that wifA* =
diag? (AN-1)A* = diag?(AN-1A) = diag?(1;) = 17,
where diag” (D) is intended to mean convert the diagonal
matrix D to a column vector and conjugate transpose (in
that order).

Since v (f;)WHA*P{AW,v;(f;) is real valued, it
follows that arg{d® (f;)A*P1d(f;)} = 2nf;. O

Comparing the Direct and Indirect ESPRIT methods, in the
former, the phase of the jth eigenvalue of ¥ is multiplied by
7 x 10°, whereas in the latter, the phase of d¥ (f;)A*P+d(f;)
is multiplied by 250 x 10®/27. The multiplicative factor in the
latter is three orders of magnitude lower than that in the former.
This is a heuristic explanation as to why the performance of
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the Indirect ESPRIT method comes much closer to achieving
the CRB than the Direct ESPRIT method.

The formula for translating F* up to the proper aliasing
zone is dictated by Fig. 4, wherein the phase of the ESPRIT
eigenvalue = e~ 7%2"F7 where 7 = 0.5 x 10~ s, is plotted
as a function of the analog baseband frequency 0 < F' < 1
GHz. Within the interval (—, ) are eight disjoint permissible
intervals, each having a width of 7/8 and a one-to-one
correspondence with each of the eight aliasing zones depicted
in Fig. 3. If the phase of the ESPRIT eigenvalue lies within
one of these permissible intervals, F' is translated to the
corresponding aliasing zone accordingly, where it is either
added to or subtracted from the appropriate integer multiple of
250 MHz. If, due to noise, the phase of the ESPRIT eigenvalue
lies within one of the impermissible regions, it is projected into
the nearest permissible region. This decomposes the interval
(—m,m) into eight distinct intervals, each having a width of
7 /4 and having a one-to-one correspondence with each of the
eight possible aliasing zones plotted in Fig. 3. The baseband
frequency of the jth source Fj is ultimately determined from
the aliased frequency estimate E ;7 according to

FJ—“ — 250 x 106round{w}) Hz
/4

—157/16 < arg{u} < 7

Fj=1x10° - F! Hz

for — 7 < arg{p;} < —157/16

Fy=

for

(19)

where round [z] is the nearest integer to x, as defined
previously.

As an example, if arg{yu;} is either in the impermissible
region 7/16 < arg{u;} < /8, the permissible region
7/8 < arg{p;} < 2w /8, or the impermissible region 27 /8 <
arg{u;} < 57/16,F ' is subtracted from 250 MHz to obtain
13“]-. Simulations presented in Section VI reveal (19) to be a
very robust formula for translating E # to the proper aliasing
zone. Note that if we are off by one in selecting the correct
aliasing zone, a very large error may be incurred. Two adjacent
aliasing zones differ in that in one F;‘ is added to nF;, whereas
in the other, it is subtracted from (n + 1)F;.

IV. 2-D ANGLE ESTIMATION WITH SPATIAL
UNDERSAMPLING VIA PRO-ESPRIT AND INTEGER SEARCH

A. Estimation of the Array Manifold for Each Source

In Section III, we saw that use of the right generalized eigen-
vectors of the L x M matrix pencil {Y, X} facilitates a simple
procedure for estimating the aliased frequency of a source that
was automatically paired with an ESPRIT eigenvalue, thereby,
in turn, facilitating simple translation up to the proper aliasing
zone. The left generalized eigenvectors of the L x M matrix
pencil {Y, X} play a similar role in the problem of estimating
the azimuth and elevation angle of each source contributing
to a given peak in the DFT spectrum. Specifically, the jth left
generalized eigenvector of {Y, X} is used to extract from the
X and Y data an estimate of the array manifold for the jth
source, which is denoted a(6,, ¢, ;). Recall the inclusion of
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k; in the definition of the array manifold is a notational tool
to reflect the fact that the array manifold is conjugated when
the base-band frequency is located on a downward sloping
portion of the aliasing function.

The jth L x 1 left generalized eigenvector 1; of the L x M
rectangular matrix pencil {Y,X} is that vector satisfying
1#{Y — p;X} = 0. Substituting the noiseless (ideal) forms
of the X and Y data matrices, we have

J
151 ZA;,ejn]‘on {e—ijZWF]T _ N}d(fj)aT(9j7¢j7ﬂj)
j=1

=0. (20)

When p = e 7¥27Fi7 the [th term d(f;)aT(6;, ¢, k1) drops
out of the sum such that 1¥d(f;) =0 fori=1,....J" 1 # .
Hence, 1; can be used to extract a(f;, ¢, ;) to within a scalar
multiple:

lfIX x aT(Bj,d)j,fcj) = XTI;‘- o a(bj, ¢;,K5)
HY o« aT(8),6,6;) =YL o a(l;,é5.55)
(21)

Thus, applying the jth left generalized eigenvector allows us
to extract an estimate of the array manifold for the jth source,
which, in turn, may be operated on to estimate the azimuth and
elevation angles of the jth source. The latter problem is greatly
simplified, specifically in cases where sources are very closely
spaced in digital frequency due to aliasing, due to the ability
to isolate a single source contribution. In addition, since 1; is
associated with the ESPRIT eigenvalue p; = e /%2757 the
azimuth and elevation angle estimates obtained by processing
the estimate of a(f;, ¢;, x;) arc automatically paired with the
estimate of F; obtained via the algorithm developed in Section
III. Knowledge of Fj is tantamount to knowledge of the proper
aliasing zone. This allows us to determine the value of «;,
enabling us to resolve a 180° ambiguity in the azimuth angle
estimate (flipping the sign of x; introduces a 180° change in
azimuth angle).

Similar to the case with the right generalized eigenvectors,
the jth L x 1 left generalized eigenvector 1; of the L x M
rectangular matrix pencil {Y, X} may be efficiently computed
from the J’ x 1 jth left eigenvector a; of ¥ in (13), satisfying
o;ljf\ll = pjedl j=1,...,J'. From (14) and (20), it follows
that

|, =UsS5le; j=1,...,J" (22)

Recall that J’ is the number of sources making a nonnegli-
gible contribution to a particular DFT spectral peak, which
may be as small as one if sources are well separated in
digital frequency.

In general, the problem of 2-D angle estimation is con-
siderably more computationally complex than the problem of
1-D angle estimation. Fortuitously, the isolation of single-
source components via PROESPRIT facilitates separable 2-D
angle estimation given an appropriate array geometry. For
example, consider a 2-D array consisting of two orthogonal
linear arrays, e.g., an L-shaped array. Since we have isolated
a single source component, we can determine the direction
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cosine of a source relative to each axis independently. Each
leg may be processed independently applying an appropriate
1-D angle-estimation algorithm. The z and y direction cosines
are automatically paired with each other as well as with the
corresponding frequency estimate. Simple trigonometry may
be invoked to convert the # and y direction cosines into
azimuth and elevation angle estimates.

4.2 Prescription for Nonuniform Element Spacing
Facilitating Nonambiguous Angle Estimation

In accordance with the discussion in Section I, to achieve
a high degree of resolution power and estimator accuracy and
yet avoid mutual coupling, the elements of each leg of the
L-shaped array are spaced nonuniformly with interelement
spacings much greater than a half wavelength. The design
problem is twofold: i) development of a prescription for
‘‘good" interelement spacings for unambiguous angle esti-
mation relative to each array axis and ii) development of a
computationally simple algorithm for processing the estimate
of the array manifold provided by PRO-ESPRIT to estimate
the direction cosine of a source with respect to each axis. Here,
we assume a small number of antenna elements due to cost and
complexity of hardware considerations and space limitations
on the antenna platform attached to the aircraft.

The L-shaped array geometry employed in the simulations
presented in Section VI is depicted in Fig. 2. The correspond-
ing array manifold is shown in (23), which appears at the
bottom of the page, where u; and v; are the direction cosines
of the jth source relative to the x and y axes, respectively,
and ); is the wavelength of the jth source related to the
RF frequency as ¢ = /\ij . where ¢ is the speed of light:
a(b;,¢;,k;) may be estimated to within an unknown scalar
multiple as

Zg, = XTI;f = 0z,a(0;, ¢, K;)

2y, = YTI; = cry]a(0j, (f)j, I‘Cj) (24)

The processing of the first five elements of the estimate of
a(8;,¢;,x;), which is mathematically represented as

v N _
zy = [15.05,34:‘ 2z; = 0z,8(v5, K;)

ZZJ = [I5EO5¢4] zy, = oy,a(vj, Kj) 25)

corresponds to processing the leg parallel to the y axis and
yields a measurement of v; = sinf;sin¢g; (-1 <wv; <1).
Here, a(vj, k;) = {153053,4 a(8;, $;, ;). Likewise, the pro-

cessing of the last five elements of a(f;,$;,x;), which is
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mathematically represented as
Zg] = |:05x4315:| Zz; = ija(u]', Ii]’)

zy = [05“215} zy, = 0y,a(u;j, K;) (26)
corresponds to processing the leg parallel to the z axis and
yields a measurement of u; = cos f); sin ¢;. Here, a(uj;, 5;) =

053;4215 a(ﬁj, ¢j, ﬁj).

In the development to follow, we concentrate primarily
on the estimation of v;. The procedure for estimating u; is
nearly identical. We begin the development by determining
restrictions on d; and dy so that the direction cosine of a source
relative to the y axis may be unambiguously determined from
the interelement phase measurements provided by elements
1, 2, and 3 in Fig. 4. We then proceed to incorporate the
other intereclement phase measurements available to us. In the
development, the true direction cosine of the jth source v; is
denoted as vj, in order to not confuse j with other integer
indices to be introduced.

Referring to the vertical leg of the L-array pictured in
Fig. 2, the element pa}r 1-2 provides a measurement of
oI 5 drvre_ i (vj°+k?ll), where k is an integer. Since
-1 < vj, < 1, the ambiguous angles resulting from the 1-2

measurement are (k, integer)

S A
v,;:z)jo-i-kd—i

ke {ceiling [—%(1 + ng)} , ﬂoor[%(l - vjo)] } 27
j J

where ceiling [x] is the integer closest to but greater than z,
and floor [z] is the integer closest to but less than z. It is thus
apparent that if d; > A;/2, ambiguities arise. The ambiguity
can only be resolved with another spatial sample. Referring to
the vertical leg of the L-array pictured in Fig, 2, the ambiguous
angles associated with the 1-3 measurement ( {, integer) are
Y
vy = vjo + 1=
] 3 d2
= d d
| € <{ ceiling 7—2(1 + vjo)] , floor [—2(1 - 'Ujo):| } (28)
Aj Aj

The objective is to choose di and dp so that alignment, i.e.,
vg = vy, only occurs for k = [ = 0.
Equating the expressions for v; and v;

oy A dy
o+ kL =, 15 - = == 29
Vjo + dr Vjo + do a4 % 29)
This indicates that ambiguities may possibly arise if —231 is

4 g da

! .
rational. Express 2 as 3% = %, where [’ and %’ are relatively

. 2dy , 2dg—d)
jrj2m by jr;2m 55 vy

a(0;,9;,k5) = [6 iy J€

. d d . d . d . 2dy—dy
K;2m 52, k2w skv; Jri2rshu;  jr2nsEu; gk 2r=2_"Lly
IR AT RS ],GJJ E J’l’e J 3 176 3ETS J’e i X; €]

. 2d
K;2m 52y
’eJ 3 5, 4

(23)
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prime, i.e., have no common factors other than unity. The set
of ambiguous angles is then v, =v;,+nk’ : —U]0+nl’ for
any n for which -1 < v, < 1. Cons1der the case of n =1
If we make sure that either vj, + k' —f or vj, + U/ —l lies
outside the visible region, i.e., is either less than —1 or greater
than +1, then there is no ambiguity, that is, within the visible
region corresponding to direction cosines with absolute value
less than 1, there is only alignment at n = 0 or E=Il=o.

Part of the design procedure then is to select d; and da such
that the relatively prime factors [’ and &’ comply with one of
the following conditions: Either

kK ¢ {ceiling [—%(1 + 'Ujg):l , floor [?\l(l - vjo)] } or
J J

!¢ {ceiling [-%(1 + 'Ujo)} , floor [%(1 - Ujg)] }

7 J
These conditions depend on the direction cosine of the source.
To remove the data dependence, we overspecify and let v;o =
1 for the lower bound limit and v;o = —1 for the upper
bound limit. The goal then is to select d; and do such that
the relatively prime factors I’ and k' comply with one of the
following conditions:

kK ¢ {—ﬂoor{%},ﬂoor[%]} or
l’¢{ ﬂoorf)i} floo [2/\61]2]}

W1th = L, where k' and I’ are relatively prime, if either
of the condmons above are satisfied, then within the visible
region, the ambiguities only align at the true source direction
cosine vjo.

Note that satisfying the condition above at 18 GHz guaran-
tees that ambiguities may be resolved at lower frequencies
since |kl ;.| = |khax| = floor[2d;/A;] decreases with de-
creasing frequency (increasing A;) as does |1/ ;.| = |laxl =
floor[2d2/ ;).

As an illustrative example, for the simulations, we chose
dy = 2.3 in and dy = 5.3 in. Consider the upper limit of
the 2—18 GHz spectrum (18 GHz) for which the wavelength
is A = 2/3 in. (30) dictates that at 18 GHz, k' ¢ {~6,6},
and ¢/ ¢ {—14,14}. Expressing dz/d; as the ratio of two
relatively prime numbers as 32 =53-3= L, we see that
K =23 ¢ {-6,6} and I' = 53 ¢ {—14,14} so that both
conditions in (30) are satisfied, and the direction cosine may
be uniquely determined over the entire 2-18 GHz spectrum.

(30)

C. Integer Search Algorithm for Direction Cosine Estimation

We have shown that through judicious selection of the
interelement spacings, it is theoretically possible to uniquely
determine the true direction cosine. We now develop an
algorithm to do just that. With respect to Fig 2, element
pairs 1-2 and 4-5 provide two measurements of ¥; =

jZﬂ';]TVjo . . . PYREI ’
arg{e’”" % " }. The candidate estimates of v;. in the “visible
region —1 < v < 1 are
NON Aj
k dl
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- i @ d
k€ {ceﬂmg'}/\—j — ﬁ},ﬂoor[/\—j ZW] } (1))

Let k* be that for which vo = 2i-t1 + k*5%. We will
determine k* by stepping through the integers in the range
of k in (31), evaluating a metric for each corresponding v,(c ),
and selecting that value for which the metric is minimum.
An appropriate metric is developed below. Note that since
d; is the smallest interelement spacing represented in the
array, the number of ambiguous angles associated with the
corresponding phase measurement ¢, is least. This is in line
with the overridding goal of keeping the computational load
as small as possible.

Element pairsd 1-3 and 3-5 provide two measurements of
Py = arg{eﬂ”ﬁv’“}. The candidate estimates of vj, in the
“visible” region are

@ _ A N
U= gy T,

d
l ili -
S {cel ng [ X
Let [* denote that value of [ such that v(z) = vjo. Equating the

expressmns for v and v(Q) in (31) and (32), respectively,

yields 5= d =i-1h; + k = ZM s=t-1hg + l—J- Selecting d; and
ds in accordance wnh the prescription developed previously,
,(cl) = v,@) only when k = k* and [ = [*. Solving for [ yields

%)

P2 dy Yo
%] floor [X;_z?]}. 32)

l—k——

. 33
d di 27 2w (33)

It follows that in stepping through the range of feasible integers
k, (33) yields an integer value of [ only when k = k* for
which [ = [*.

An algorithm for determmmg k* is then as follows For each
integer k in {ceiling [— —t — 21, floor [—L — 211}, compute
the corresponding ! according to (33). Select k* as that for
which |£ — round[l]| is minimum, where round [I] is the integer
closest to I. Although this is a rather ad hoc technique, it is
computationally simple, and simulations reveal that it performs
very well with respect to resolving the ambiguity.

Thus far, we have only made use of the relative phase
measurements associated with the interelement spacings di
and d». Element pa1rs 2 3 and 3-4 provide two measurements

of 3 = arg{eﬂ’r UJO} Equating /USn = -——J_-Zw(dzfdl Y3 +

w1th the expression for v( ) and solving for m yields

dy—di  dp—divy s
dl d1 2w 27l’.

Relative to the prototype array in Fig. 2, x4 = 38 = 53 =

™. Equation (30) dictates that at 18 GHz, k' ¢ {—6,6} and
m gZ {-8,8}. Since k¥’ = 23 and m’ = 30, the conditions are
satisfied so that (34) only yields an integer when k = k™.

Similarly, element pairs 1—4 and 2 5 provide two mea-

arg{e }. Equating o =

with the expression for vfcl)

,\
M=

=k

(34)

3.0 _ 30 _
2.3

U o
surements of ¥y = ’

and

A A
27r(2drd1)¢4 + Mg T
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With 1<L<6 DFTvalues centered at a DFT spectral peak in both X and Y data
ati- t.hamenm,x-l M, cmsmncthl DFT vectors (L’ =floor [ (L-1)/21):

Forhrdn LxL covariance and cross-covariance matrices:
H H
Rxx= E] Xi(kc) xi(ko)/M Ryx= E‘ Yi(ko) Xi(k() /M
i

Compute EVD of Rxx Determine no. of sources, J , (1<J<L) contributing
to spectral peak at lbby applying statistical test (e.g., AIC) to eigenvalues.

£ = ding 0~ X = Ay SO0 Uiz [u,eey 0,1 000

eigenvalues, [

eigenvalues, uj

.1 H .
Compute EVD of W= X 1U R U Z ! xd) >— .
S$Syxs's right | eigenvectors, Bj

left eigenvecmml %

A
r’{ for each source, j=1,...,J, estimate analog | "'Fj' and direction cosine, vj‘:}<—
!
for each interelement spacing, d. yi=hL
represented in leg, estimate corr. phnse differential:|
H_.1 H H 1 Hy L
- X yEo)2n|| Fa L N ufFuzp L
0= ag fu = U X )X (&)U 7eo (B ZUAPUZHLFE
m-th and n-th antennas are separated byd baseband i F. .
d y is smallest interelement spacing in legl ase freq. estimate (0 < i< 1GHz):
A |aa arg{p.}+ x/16
1 F=|F—Feromnd| 3 "
determine n 13 that integer in range i 1S
A A
nlc:{ocllmg[-dlllj-‘?l] ,ﬂoor[dll lj -9 ]}

a
aliased freq. estimate (0 < Fj < 125 MHz):

n/4

esnrnnte of wavelcnglh
;‘ =c/(E +F ) c: speed of light |

I
for which T
i=2

where: 0, = (d,/d)(n +9)-9,

n.- R
yround [0l i minimum mix

mlxer frequency: 2<F m=< 17 GHz

i=2,...1

e |
t
i
i
- 1 i ( defined quantities (computed a-priori): —}
j=-sienfag (py)) W |1l Fg=250MHz  w=expl-2aN) |
U a I ag DA A koL & Kk +L) !
ek 1y 39 ; C‘,"=_1¢,+n‘.4 i A=diag{ ° w° w?® }:
E I P PTTe 0 g e TN N v
A A “ L pt=1.ly (1 Lx1 composcdofoncsj
Fj and vj automatically paired- 1.,,1,,); ,L, ,,,,,,,,,,,,,,,,,,,
Fig. 5. Flowchart of frequency and 2-D angle estimation algorithm.

solving for n yields

2do—dy | 2do—diPr s
=k — - = 3
d] + d1 2T 2 ( 5)
Relatlve to the prototype array in Fig. 2, M = % = % =
F' Equation (30) dictates that at 18 GHz, k’ ¢ {-6,6}, and

n' ¢ {—22,22}. Since k¥’ = 23 and n’ = 83, the conditions
are satisfied so that (35) only yields an integer when k = k*.

A refined algorithm for determining k* is as follows.
For each integer k in {ceiling [-$ — £1], floor [& — £4]},
compute the corresponding value of I,m, and n accord-
ing to (33)—(35), respectively. Select k* as that for which
|l-round[l]| + |m-round[m]| + |n-round[n}| is minimum. Once
k* is determined, compute [*,m*, and n* by substituting
k* into (33)-(35), respectively. Compute the corresponding

estimates of the direction cosine according to U,(Cl.) = 27&1/)1 +
. _L 2@ = * _L @) _ Aj / s
k ( ; 27rd2¢ +IG v = 2w(d2—d1)w3+m G-d;
4 X A L .
- N x_ N
and vy, 27r(2d2—d1)¢4 + (LU s The direction cosine

relatlve to the vertical axis is estimated as a weighted sum of
these estimates. Each direction cosine estimate is weighted by
the corresponding interelement distance as the accuracy of the
estimate increases with increasing distance, provided one can
resolve the ambiguity.

A similar procedure may be used to estimate the direction
cosine relative to the horizontal axis. A flowchart of the
overall algorithm, including frequency estimation, is depicted
in Fig. 5. The computational simplicity is evident. Note, that
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TABLE I
SIGNAL PARAMETERS FOR SIMULATION EXAMPLE |
J Fi(RF) F; 7 k; = [Z &,
(GHz) (MHz) | (MHz) | 128F}/f; | (deg.) | (deg.)
1| (2/17).227 227 23 11.8 20 40
2 [ (2/17).275 275 25 12.8 50 30

due to space limitations, the processing of the left eigenvectors
indicated in the flowchart is only relative to a single leg and
needs to be repeated for each leg.

V. SIMULATION EXAMPLES

The performance of the frequency and 2-D angle estima-
tion algorithm summarized in the flowchart in Fig. 5 was
examined in two simulation examples. Example 1 involves
two sources very closely spaced in frequency after sampling
due to aliasing. Example 2 represents a very stressful signal
environment involving four sources that were very closely
spaced in frequency after sampling. In both cases, simulations
were conducted at the lower and upper ends of the 2-18 GHz
spectrum. This was done to show that the algorithm works
properly over a very wide bandwidth using the same physical
array: the M = 9 element L-shaped array with geometry
depicted in Fig. 2. Note that at 18 GHz, the wavelength is
roughly 0.67 in. such that the smallest interelement spacing
in the L-array (d; = 2.3 in) is roughly seven times a half
wavelength. In general, both d; and d, are several times
greater than a half wavelength at all frequencies in the band
2-18 GHz.

The simulation parameters indicated in Figs. 1 and 2 were
common to all simulation runs. In all cases, the signal scenario
was composed of equipowered RF-pulsed signals (monochro-
matic planewaves) that were “turned on” during the entire
0.5-ps interval in which 128 samples were collected. White
Gaussian noise was added to the raw data samples output
from each channel of each antenna, in accordance with the
raw data model described in (36) and (37) of Appendix A,
prior to computing the 128-point DFT. Finally, the CRB
for a particular set of simulation parameters was computed
according to expressions developed in Appendix A.

Example 1: The parameters describing the two signal ar-
rivals are listed in Table 1. In the one set of simulations, the
signals were in the 2-3 GHz band, and the mixing frequency
was 2 GHz, whereas in the other, the signals were in the
17-18 GHz band, and the mixing frequency was 17 GHz. A
typical DFT spectrum representative of any of the 18 sampled
channels (two channels for each of M = 9 antennas) for either
signal band (2-3 GHz or 17-18 GHz) is plotted in Fig. 8.
Due to their relative proximity, the two signal arrivals give
rise to a single peak in the positive frequency portion of the
spectrum. The frequency and 2-D angle estimation algorithm
was applied to the DFT values in the range 11-14. In each
run, the major computations were a 4 X 4 EVD followed by a
2 x 2 EVD. Sample statistics computed from 250 independent
runs for each of a number of different SNR’s are plotted in
Figs. 6, 7, 9, and 10.
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g Frequency Estimates (2-3 GHz band)

+227 MHz source
©275 MHz source

s, Indirect
Beamspace ESPRIT

Standard Deviation (Hz)

2 4 6 10 12 14 16

8
SNR (dB)

Fig. 6. Frequency estimation performance for Example 1 with signals in the
2-3 GHz band.

0 Azimuth Estimates (2-3 and 17-18 GHz bands)

simulations: 2 GHz +227 MHz source
0275 MHz source

o

Standard Deviation (deg.)

Fig. 7. Azimuth estimation performance for Example 1.
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Fig. 8. Sample DFT spectrum of X data for Example 1.

Figs. 6 and 9 reveal the high variance of the Direct ESPRIT
frequency estimates, which are three orders of magnitude
greater than the CRB, in accordance with the discussion in
Section III. The sample standard deviations of the Indirect
Beamspace ESPRIT frequency estimates are very close to the
CRB, particularly for SNR’s greater than 4 dB. An important
point to note is that despite how closely spaced the two sources
are in frequency after aliasing, in all cases, i.e., for each source,
for each SNR tested, and for each of 250 independent runs, the
aliased frequency estimate obtained from Beamspace ESPRIT
was translated to the proper aliasing zone. This demonstrates
the robustness of the translation formula in (19). Note that
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3 Frequency Estimates (17-18 GHz band)
10 T T
+227 MHz source
! Direct 0275 MHz source
10lf T s ESPRIT

Indirect
3¢+ Beamspace ESPRIT

Standard Deviation (Hz)

8 10 12 ]l4 16
SNR (dB)

Fig. 9. Frequency estimationperformance for Example 1 with signals in
17-18 GHz band.
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Fig. 10. Elevation estimation performance for Example 1.

the biases of the frequency estimates were always less than or
equal to 1 MHz, which is negligible relative to the actual RF
frequencies that are in the 2-18 GHz band.

Relative to the appropriate CRB, the performance of the
angle estimation subroutine is not nearly as good as that of
the frequency estimation subroutine. The sample standard de-
viations of the angle estimates obtained from the integer search
algorithm are roughly two orders of magnitude greater than the
CRB. This is true for both azimuth and elevation angle estima-
tion as evidenced in Figs. 7 and 10, respectively, and for both
ends of the 2-18 GHz spectrum. Better performance may be
achieved by using the angle estimates from the integer search
algorithm as starting points for localized Newton searches of a
1-D or 2-D MUSIC spectrum, or for initializing the expectation
maximization algorithm, for example. However, imperfections
in the hardware implementation of the algorithm may preclude
achieving the CRB, which, for the case where the signals are
in the 17-18 GHz band, is roughly 0.001°. It may be very
difficult to achieve this kind of accuracy in practice even if
it is achieved in simulation. Note that although the sample
variances of the angle estimates were large relative to the CRB,
the sample biases were very small. Although not plotted, the
sample biases obtained in the 2-3 GHz range were less than
0.1° in all cases, even at 0 dB SNR, whereas the sample biases
obtained in the 17-18 GHz range were less than 0.01° in all
cases, even at 0 dB SNR.
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5 Frequency Estimates (2-3 GHz band)
T T T T T

T T
Direct + 49 MHz source
ESPRIT

X - Indirect

Standard Deviation (Hz)

8 12 14 16
SNR (dB)

Fig. 11. Frequency estimation performance for Example 2 with signals in
the 2-3 GHz band.

1 Azimuth Estimates (2-3 and 17-18 GHz bands)
10 ™ ™ T T T

+149 MHz source

X X 0 700 MHz source
fo simulations: 2 GHz x952MHz source
100 *303MHz source |

Standard Deviation (deg.)

Fig. 12. Azimuth estimation performance for Example 2.

TABLE 11
SIGNAL PARAMETERS FOR SIMULATION EXAMPLE 2
i| Fi(RF) F; F k; = 9; b5
(GHz) (MHz) | (MHz) | 128F}/f, | (deg.) | (deg.)
1| (2/17).952 952 48 24.6 120 15
2 | (2/17).049 49 49 25.1 20 40
3 | (2/17).700 700 50 25.6 50 30
4 | (2/17).303 303 53 27.1 200 45

Again, for signals in the 17-18 GHz band, the smallest
interelement spacing in the L array employed is roughly seven
times greater than a half wavelength. For a given source in a
given run and for a given leg of the array, the integer search
algorithm had to choose which of roughly seven possible
angles is the correct one. For all SNR’s tested, the algorithm
chose an angle in the vicinity of the actual angle in all 250
independent runs, despite how closely spaced the two sources
were in frequency after aliasing.

Note that whereas the performance of the frequency-
estimation phase of the algorithm did not vary significantly
from one end of the 2-18 GHz spectrum to the other, the
performance of the angle estimation phase of the algorithm
did. The sample standard deviations of the angle estimates
obtained in the 17-18 GHz range are roughly an order of
magnitude smaller than those for the corresponding sources in
the 2-3 GHz range. This is to be expected since the aperture
length in terms of wavelengths at 18 GHz is roughly an order
of magnitude greater than that at 2 GHz.

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 10, OCTOBER 19%4

400 24-128

0 20 40 60 80 100 120 140

Fig. 13. Sample DFT spectrum of X data for Example 2.
8 Frequency Estimates (17-18 GHz band)
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Fig. 14. Frequency estimation performance for Example 2 with signals in
the 17-18 GHz band.
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Fig. 15. Elevation estimation performance for Example 2.

Example 2: This simulation example is presented to
demonstrate the power of the algorithm in light of the stressful
nature of the signal scenario. The parameters describing each
of the four signal arrivals simulated are listed in Table II.
A typical DFT spectrum is plotted in Fig. 13. The four
signal arrivals give rise to a single split peak in the positive
frequency portion of the spectrum. The frequency and 2-D
angle estimation algorithm was applied to the DFT values in
the range 24-28. In each run, the major computations are a
5 x 5 EVD followed by a 4 x 4 EVD. More sample statistics
computed from 250 independent runs for each of a number of
different SNR’s are plotted in Figs. 11, 12, 14, and 15.

Despite the fact that the four sources were all aliased to
within a 4-MHz range, performance similar to that obtained
in the much less stressful signal scenario of Example 1 was
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achieved. Relative to the 17-18 GHz simulation, for a given
source in a given run and for a given leg of the array, the
integer search algorithm had to choose which of roughly seven
possible angles is the correct one. For SNR’s greater than or
equal to 5 dB, the algorithm chose an angle in the vicinity
of the actual angle in all 250 independent runs. At O dB,
an erroneous angle was selected roughly 10% of the time.
This yielded a very large sample variance not plotted in either
Figs. 12, 14, or 15. Bearing in mind the stressful nature of the
signal environment, four sources aliased to within a 4-MHz
range, this is actually a remarkable performance.

VI. FINAL COMMENTS

The frequency and 2-D angle estimation algorithm devel-
oped within and summarized in Fig. 5 is not able to handle
sources that are aliased to exactly the same frequency. Ex-
amining Fig. 3, this will occur if i) two sources are separated
in frequency by nF; or ii) if one source is at nFy — AF,
while another is at nFy + AF, where n is an integer. The
failure of the algorithm in this case is due to a rank deficiency
in the X and Y data matrices similar to the coherent signal
problem encountered in array signal processing [9]. At the
cost of a modest increase in computation, this deficiency may
be overcome by working with spatial covariance matrices, as
opposed to frequency domain covariance matrices, and per-
forming a single forward-backward average when processing
each leg of the L-array independently. The single forward-
backward average is facilitated by the symmetric placing of
elements along an axis. A more general measure would be to
incorporate an additional sampled channel at a different rate,
e.g., 225 MHz. This is the subject of ongoing investigation.

APPENDIX A
COMPUTATION OF CRAMER-RAO LOWER BOUND
FOR FREQUENCY AND 2-D ANGLE ESTIMATION

The data model used for calculating the CRB is the raw data
output from the reference and time-delayed channels of each
of M antenas. By raw data, we mean that which is prior to any
processing, including the FFT (or DFT). Let x(n) denote the
M x 1 vector, where the ith component is the raw data output
from the reference channel of the ith antenna ¢ = 1,..., M,
at the nth sampling instant n = 0,1,..., N — 1. Let y(n) be
defined similarly relative to the time-delayed channel at each
antenna. From the initial development in Section II, it follows
that x(n) and y(n) may be expressed as

Re{AQ"c} +n,(n) n=01,...
= Re{AQ"®c} + ny(n

x(n) =

y(n)

N -1 (36)
n) n=0,1,...,N-1.
37

The various quantities in (36) and (37) are defined below. A
is the M x J DOA matrix

A =T[a(b1,¢1) a(b2, ) -a(Bs,65)]  (38)

where a(f;, ¢;) is defined by (23) with s; = 1. cisthe J x 1
vector

c=ler, e, ch)F =+ jé (39)
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where ¢; = A; e7:° is the complex amplitude of the jth source
at time n = 0 at the reference element. € is the J x J diagonal
matrix

Q = diag{e' T, 22T . T}

(40)
where w; = 27 F; with F}; denoting the baseband analog fre-
quency, and 7 is the sampling interval equal to the reciprocal
of the sampling rate F,. @ is the J x J diagonal matrix

& = diag{e’' 7,27, ..., e}

(41)

where 7 is the time delay equal to 0.5 ns = 0.5 x 107% s in
our prototype system. n,(n) and ny(n),n = 0,1,...,N —
1, are ii.d. multivariate Gaussian noise vectors n.(n) ~
N(O,UZIM) and ny(n) ~ N(O, U%IM)

Given the Gaussian assumption on the respec-
tive distributions of ng(n) and ny(n), it follows
that x(n) ~ N(Re{AQ"c},02Ip) and y(n) ~

N(Re{AQ"®c},021,;). The log-likelihood function is

InL(w,8,,E,&02) = constant — NM In o2 (42)
] Nl
n 2
~ 57 2 Ix(n) ~ Re{AQ"c}]|
n=0
| N
~ 53 > lly(n) - Re{AQ"®c} %
n n=0
Let o denote the set of parameters on which
the log-likelihood function depends. «  contains
5J + 1 parameters, which we group as follows:
= [wwa....wslT, 8 = [01,6s,....05]7,
¢ = [¢17¢2’--->¢J]T7 e = [A1c08710,.- -, AyCOsTV,
¢ = [A;sinqie,..., Assiny,), and o2 is the unknown

noise power. Recall that J is the total number of sources.
With the (57 + 1) x (5J + 1) Fisher information matrix
defined as J = I(a) = E{V,(In L)VL(In L)}, the CRB on
any unbiased estimator of the ith parameter a; is [J iy
i.e., the sth diagonal element of the inverse of J. Taking into
account symmetry, the Fisher information matrix may be built
up from the (1, 1) element E[(dd? (In L))?] = 4X the five

0-47

1 x J blocks, E[aaz (In L)V (ln L)] E[aaz (In L)VT(ln Ly,
[802 (In L)VT(ln L), E[ (ln L)VT(ln Ly,
[adg (In L)VE(In L)), all of which are equal to 0, and

the J % J blocks E[V;VT], E[V.VT], E[V.V]], E[V:VT],
E[V:VI], E[V:VI], E[VeVil. E[V:VI], EB[V:V],

E[VsVE). E[VeVI) EIVsVI] E[V.VI] E[VeVI)

and E[V,VZI], where it is understood that the function

on which the gradient is operating in each case is the
log-likelihood function in (42). The derivation of each block
is straightforward. Due to space limitations, it is not feasible
to present an expression for each of these 15 J x .J blocks.
As an example, though

and

N-1
1
E[VeVi] = = Re{Q"C*A1Re{A,Q"C}
" n=0
N-—
—2 Z Re{Q*"C*®* A JRe{A,2Q"C}
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43)
where C, Ay, and A, are defined as follows:
C = diag{ec1,c2,...,cs} @)
Ag= [%3(9’¢)‘(9,¢):(6J,¢j)’j = 1,...,J}
Ay = {%a(0,¢)|(e,¢):(ej|¢j),j = 17._.74.
(C))

(1]

[2]

B3]

[4]

{5]

(6]

(7
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